If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (4x3 + -6xy) * dx + (4y3 + -6xy) * dy = 0 Reorder the terms: (-6xy + 4x3) * dx + (4y3 + -6xy) * dy = 0 Reorder the terms for easier multiplication: dx(-6xy + 4x3) + (4y3 + -6xy) * dy = 0 (-6xy * dx + 4x3 * dx) + (4y3 + -6xy) * dy = 0 (-6dx2y + 4dx4) + (4y3 + -6xy) * dy = 0 Reorder the terms: -6dx2y + 4dx4 + (-6xy + 4y3) * dy = 0 Reorder the terms for easier multiplication: -6dx2y + 4dx4 + dy(-6xy + 4y3) = 0 -6dx2y + 4dx4 + (-6xy * dy + 4y3 * dy) = 0 -6dx2y + 4dx4 + (-6dxy2 + 4dy4) = 0 Reorder the terms: -6dxy2 + -6dx2y + 4dx4 + 4dy4 = 0 Solving -6dxy2 + -6dx2y + 4dx4 + 4dy4 = 0 Solving for variable 'd'. Move all terms containing d to the left, all other terms to the right. Factor out the Greatest Common Factor (GCF), '2d'. 2d(-3xy2 + -3x2y + 2x4 + 2y4) = 0 Ignore the factor 2.Subproblem 1
Set the factor 'd' equal to zero and attempt to solve: Simplifying d = 0 Solving d = 0 Move all terms containing d to the left, all other terms to the right. Simplifying d = 0Subproblem 2
Set the factor '(-3xy2 + -3x2y + 2x4 + 2y4)' equal to zero and attempt to solve: Simplifying -3xy2 + -3x2y + 2x4 + 2y4 = 0 Solving -3xy2 + -3x2y + 2x4 + 2y4 = 0 Move all terms containing d to the left, all other terms to the right. Add '3xy2' to each side of the equation. -3xy2 + -3x2y + 2x4 + 3xy2 + 2y4 = 0 + 3xy2 Reorder the terms: -3xy2 + 3xy2 + -3x2y + 2x4 + 2y4 = 0 + 3xy2 Combine like terms: -3xy2 + 3xy2 = 0 0 + -3x2y + 2x4 + 2y4 = 0 + 3xy2 -3x2y + 2x4 + 2y4 = 0 + 3xy2 Remove the zero: -3x2y + 2x4 + 2y4 = 3xy2 Add '3x2y' to each side of the equation. -3x2y + 2x4 + 3x2y + 2y4 = 3xy2 + 3x2y Reorder the terms: -3x2y + 3x2y + 2x4 + 2y4 = 3xy2 + 3x2y Combine like terms: -3x2y + 3x2y = 0 0 + 2x4 + 2y4 = 3xy2 + 3x2y 2x4 + 2y4 = 3xy2 + 3x2y Add '-2x4' to each side of the equation. 2x4 + -2x4 + 2y4 = 3xy2 + 3x2y + -2x4 Combine like terms: 2x4 + -2x4 = 0 0 + 2y4 = 3xy2 + 3x2y + -2x4 2y4 = 3xy2 + 3x2y + -2x4 Add '-2y4' to each side of the equation. 2y4 + -2y4 = 3xy2 + 3x2y + -2x4 + -2y4 Combine like terms: 2y4 + -2y4 = 0 0 = 3xy2 + 3x2y + -2x4 + -2y4 Simplifying 0 = 3xy2 + 3x2y + -2x4 + -2y4 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Solution
d = {0}
| 1.5e-9= | | 2x-4x+5=30 | | 8+6x=-5x-25 | | 8a-6y= | | 2.3x+29.3=1.2(4-x) | | 5a+-5=7+2a | | 3.6=7.5x | | (16x^2)-9(y^2)-64x-54y-161=0 | | 8+7p=2p-2 | | 6x+2y=62 | | -x+3=5x-3 | | (3x+y-z)-(3x-2z)-(2x-6y)= | | 2n+7+3n=32 | | 2n-7n=-8-4n | | 18+2n-7=44 | | a+-6=11 | | 4x-2=25 | | 5x+12y-39=0 | | 2(y+x)=80 | | 8-3x=p | | 2x-9=-7+x | | 5x-(3x+1)=7 | | p-17=-16 | | 2/9+5x=-4x+253/45 | | 7x-11=8x-1 | | 4i=2i^7 | | -x-4=x+8 | | 11x-3(x+2)=-18 | | 8+3.50x=36 | | 8z^2-15z+7=0 | | 15x+4=10x-6 | | 7x+5+x=21 |